LaTeX¶
Symbols¶
Note the difference between
\(v\quad\) v
\(\nu\quad\) \nu
\(\upsilon\quad\) \upsilon
Greeks, arrows, symbols, see here.
Alignment¶
In short, odd-indexed &
are used before =
to align them, and even-indexed &
are necessary to separate the columns.
1 column, with 1
&
in each line before=
.\begin{align} x^2 + y^2 & = 1 \\ x & = \sqrt{1-y^2} \end{align}
\[\begin{split} \begin{align} x^2 + y^2 & = 1 \\ x & = \sqrt{1-y^2} \end{align} \end{split}\]2 columns of equations, with 3
&
in each line: 2 before=
and 1 in-between columns.\begin{align} \text{Compare} x^2 + y^2 &= 1 & x^3 + y^3 &= 1 \\ x &= \sqrt{1-y^2} & x &= \sqrt[3]{1-y^3} \end{align}
\[\begin{split} \begin{align} \text{Compare} x^2 + y^2 &= 1 & x^3 + y^3 &= 1 \\ x &= \sqrt{1-y^2} & x &= \sqrt[3]{1-y^3} \end{align} \end{split}\]1 column of equation and 1 column of text, use
&&
.\begin{align} x &= y && \text{by hypothesis} \\ x' &= y' && \text{by definition} \\ x + x' &= y + y' && \text{by Axiom 1} \end{align}
\[\begin{split} \begin{align} x &= y && \text{by hypothesis} \\ x' &= y' && \text{by definition} \\ x + x' &= y + y' && \text{by Axiom 1} \end{align} \end{split}\]3 columns of equations, 5
&
in each line: 3 before=
and 2 in-between columns.\begin{align} x &= y & X &= Y & a &= b+c \\ x' &= y' & X' &= Y' & a' &= b \\ x + x' &= y + y' & X + X' &= Y + Y' & a'b &= c'b \end{align}
\[\begin{split} \begin{align} x &= y & X &= Y & a &= b+c \\ x' &= y' & X' &= Y' & a' &= b \\ x + x' &= y + y' & X + X' &= Y + Y' & a'b &= c'b \end{align} \end{split}\]2 columns, but different number of rows
\begin{equation} \begin{aligned} x^2 + y^2 &= 1 \\ x &= \sqrt{1-y^2} \\ \text{and also }y &= \sqrt{1-x^2} \end{aligned} \qquad \begin{aligned} (a + b)^2 &= a^2 + 2ab + b^2 \\ (a + b) \cdot (a - b) &= a^2 - b^2 \end{aligned} \end{equation}
\[\begin{split} \begin{equation} \begin{aligned} x^2 + y^2 &= 1 \\ x &= \sqrt{1-y^2} \\ \text{and also }y &= \sqrt{1-x^2} \end{aligned} \qquad \begin{aligned} (a + b)^2 &= a^2 + 2ab + b^2 \\ (a + b) \cdot (a - b) &= a^2 - b^2 \end{aligned} \end{equation} \end{split}\]Similar example as above, with
[b]
(move upward) and[t]
(move downward)\begin{equation} \begin{aligned}[b] x^2 + y^2 &= 1 \\ x &= \sqrt{1-y^2} \\ \text{and also }y &= \sqrt{1-x^2} \end{aligned} \qquad \begin{gathered}[t] (a + b)^2 = a^2 + 2ab + b^2 \\ (a + b) \cdot (a - b) = a^2 - b^2 \end{gathered} \end{equation}
\[\begin{split} \begin{equation} \begin{aligned}[b] x^2 + y^2 &= 1 \\ x &= \sqrt{1-y^2} \\ \text{and also }y &= \sqrt{1-x^2} \end{aligned} \qquad \begin{gathered}[t] (a + b)^2 = a^2 + 2ab + b^2 \\ (a + b) \cdot (a - b) = a^2 - b^2 \end{gathered} \end{equation} \end{split}\]