Geometry

Hyperplanes and Half-spaces

Hyperplanes

For \(\boldsymbol{x} \in \mathbb{R} ^n\), the equation \(\boldsymbol{a} ^\top \boldsymbol{x} = b\) defines a hyperplane \(H\) in \(\mathbb{R} ^n\),

\[ H = \left\{ \boldsymbol{x} \in \mathbb{R} ^n \mid \boldsymbol{a} ^{\top} \boldsymbol{x} = b \right\} \]

where

  • \(\boldsymbol{a}\) is a normal vector of that hyperplane, meaning that it is orthogonal to the hyperplane, i.e. it is orthogonal to any vector on the hyperplane. Specifically, let \(\boldsymbol{x} _1, \boldsymbol{x} _2\) be two points on the hyperplane, then \(\boldsymbol{x} _1 - \boldsymbol{x} _2\) is a vector on the hyperplane, and hence \(\boldsymbol{a} ^{\top} (\boldsymbol{x}_1 - \boldsymbol{x}_2) = 0\) for all \(\boldsymbol{x} _1, \boldsymbol{x} _2 \in H\).

  • \(b\) is the distance from the origin to this hyperplane.

The distance from a point \(\boldsymbol{y}\) to this hyperplane is

\[ \frac{1}{\left\Vert \boldsymbol{a} \right\Vert } \left\vert \boldsymbol{a} ^\top \boldsymbol{y} - b \right\vert \]

note that the distance is always positive.

Half-spaces

A half-space is either of the two parts into which a hyperplane \((\boldsymbol{a} ^\top \boldsymbol{x} = b)\) divides an affine space.

A strict linear inequality specifies an open half-space:

\[\boldsymbol{a} ^\top \boldsymbol{x} >b\]

A non-strict one specifies a closed half-space:

\[\boldsymbol{a} ^\top \boldsymbol{x} \ge b\]

A half-space is a convex set.

Polytopes

Let’s first review some basics.

  • A polygon (多边形) is a 2-dimensional polytope

    Fig. 4 Polygons [Wikipedia]

  • A polyhedron (多面体) is a 3-dimensional polytope.

    Fig. 5 Polyhedrons [Wikipedia]

Then, a polytope (多胞体) is a generalization in any number of dimensions. It a geometric object with flat sides. Flat sides mean that the sides of a (k+1)-polytope consist of k-polytopes that may have (k−1)-polytopes in common. For instance, the sides of a polyhedron consist of polygons that may have 1-polytope (dion) in common.

Properties

  • Convex: A polytope can be convex. For instance, intersection of a set of half-spaces.

  • Bounded: A polytope is bounded if there is a ball of finite radius that contains it.

Definition (full-dimensional)

A polyhedron \(P \in \mathbb{R} ^n\) is full-dimensional if it has positive volume. Equivalently,

  • if it has \(n+1\) affinely independent points

  • if it contains a ball of positive radius

Ellipsoids

An ellipsoid is a generalization of an ellipse into any number of dimensions.

In 3-d case, the implicit equation of an ellipsoid has the standard form

\[ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \]

Fig. 6 Sphere (\(a = b = c\), top), Spheroid (\(a = b \ne c\), bottom left), Tri-axial ellipsoid (\(a,b,c\) all different, bottom right)

Characterization

Formally, a set \(E\) of vectors in \(\mathbb{R} ^n\) of the form

\[ E=E(\boldsymbol{z} , \boldsymbol{D})=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid(\boldsymbol{x} -\boldsymbol{z} )^{\top} \boldsymbol{D} ^{-1}(\boldsymbol{x} -\boldsymbol{z} ) \leq 1\right\} \]

where \(\boldsymbol{D}\) is an \(n\times n\) positive definite matrix, is called an ellipsoid with center \(\boldsymbol{z} \in \mathbb{R} ^n\).

Other formulation: \(E(\boldsymbol{b} , \boldsymbol{A})=\left\{\boldsymbol{x} \in \mathbb{R} ^2:\|\boldsymbol{A} \boldsymbol{x} -\boldsymbol{b} \|_{2} \leq 1\right\}\) where \(\boldsymbol{A}\) is p.d. The volume of \(E\) is proportional to \(\operatorname{det} (\boldsymbol{A} ^{-1} )\).

Relation between \((\boldsymbol{z} ,\boldsymbol{D})\) and \((\boldsymbol{b}, \boldsymbol{A})\):

\[\begin{split}\begin{aligned} \|\boldsymbol{A} \boldsymbol{x} -\boldsymbol{b} \|_{2} &\leq 1 \\ \left( \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b} \right) ^{\top} (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b} )&\le 1 \\ [\boldsymbol{A} \left( \boldsymbol{x} - \boldsymbol{A} ^{-1} \boldsymbol{b} \right)] ^{\top} [\boldsymbol{A} \left( \boldsymbol{x} - \boldsymbol{A} ^{-1} \boldsymbol{b} \right)]&\le 1 \\ (\boldsymbol{x} - \boldsymbol{A} ^{-1} \boldsymbol{b} ) ^{\top} (\boldsymbol{A} ^{\top} \boldsymbol{A} ) (\boldsymbol{x} - \boldsymbol{A} ^{-1} \boldsymbol{b} )&\le 1\\ \end{aligned}\end{split}\]

Hence, the relation is \(\boldsymbol{z} = \boldsymbol{A} ^{-1} \boldsymbol{b}\) and \(\boldsymbol{D} = (\boldsymbol{A} ^{\top} \boldsymbol{A} ) ^{-1}\), or \(\boldsymbol{b} = \boldsymbol{A} \boldsymbol{z}\) and \(\boldsymbol{A} = \boldsymbol{D} ^{-1/2}\). Hence \(\operatorname{vol} (E) \propto \operatorname{det} (\boldsymbol{D} ^{1/2})\), or \(\operatorname{det} (\boldsymbol{D} ) \propto \operatorname{vol}(E)^2\). We use many properties of positive definite matrices, see the relevant section.

Ball

Wikipedia

For any \(r >0\), the ellipsoid

\[\begin{split} \begin{aligned} E\left(\boldsymbol{z} , r^{2} I\right) &=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid(\boldsymbol{x} -\boldsymbol{z} )^{\top}(\boldsymbol{x} -\boldsymbol{z} ) \leq r^{2}\right\} \\ &=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid\|\boldsymbol{x} -\boldsymbol{z} \|_2 \leq r\right\} \end{aligned} \end{split}\]

is called a ball centered at \(\boldsymbol{z}\) of radius \(r\).

Cones

Normal Cones

The normal cone of a convex set \(S\) at a point \(\boldsymbol{x} \in S\) is defined as

\[ N_{S}(\boldsymbol{x}) := \left\{ \boldsymbol{d} \mid \langle \boldsymbol{y} - \boldsymbol{x} , \boldsymbol{d} \rangle \le 0, \forall \boldsymbol{y} \in S \right\} \]

Fig. 7 Normal cones [Friedlander and Joshi]

For instance,

  • For an affine set

    \[S = \left\{ \boldsymbol{x} \mid \boldsymbol{c} _i ^{\top} \boldsymbol{x} = b_i, i = 1, 2, \ldots, m \right\}\]

    The normal cone is just a linear combination of all vectors perpendicular to the hyperplanes

    \[N_S (\boldsymbol{x}) = \left\{ \sum_{i=1}^m \lambda_i \boldsymbol{c} _i \mid \lambda _i \in \mathbb{R} \right\}\]

    It easy to see that \(\boldsymbol{c} _i ^{\top} (\boldsymbol{y} - \boldsymbol{x} ) = 0\) for all \(i\) and \(\boldsymbol{y} \in S\). If we write \(\boldsymbol{C} \boldsymbol{x} = \boldsymbol{b}\), then the normal cone is the linear combination of rows of \(\boldsymbol{C}\), i.e. \(\operatorname{range} (\boldsymbol{C} ^{\top})\).

  • For a set of points with non-negative coordinates

    \[S = \left\{ \boldsymbol{x} \in \mathbb{R} ^n \mid x_j \ge 0, \forall j = 1, 2, \ldots, n \right\}\]

    For a point \(\boldsymbol{x} \in S\), define an active set \(A(\boldsymbol{x}) = \left\{ j \mid x_j = 0 \right\}\) that consists of the indices of zero coordinates of \(\boldsymbol{x}\). The normal cone of \(S\) at \(\boldsymbol{x}\) is

    \[N_S (\boldsymbol{x} ) = \left\{ - \sum_{j \in A(\boldsymbol{x})} \mu_j \boldsymbol{e} _j \mid \mu_{j} \ge 0\right\}\]

    where \(\boldsymbol{e}_j\) are canonical vectors. The set can also be expressed as

    \[N_S (\boldsymbol{x} ) = \left\{ - \sum_{j=1}^n \mu_j \boldsymbol{e} _j \mid \mu_{j} \ge 0, \sum_{j=1}^n\mu_j x_j =0\right\}\]

    which states that \(\mu_j = 0\) as long as \(x_j \ne 0\). In matrix form, we can write it as

    \[N_S (\boldsymbol{x} ) = \left\{ - \boldsymbol{\mu} \mid \boldsymbol{\mu} \ge 0, \langle \boldsymbol{\mu} , \boldsymbol{x} \rangle > 0\right\}\]
  • More generally, combining them together,

    \[S = \left\{ \boldsymbol{x} \in \mathbb{R} ^n\mid \boldsymbol{c} _i ^{\top} \boldsymbol{x} = b_i, x_j \ge 0 \ \forall i \in [m], j \in [n]\right\}\]

    The normal cone is

    \[N_S (\boldsymbol{x} ) = \left\{ \sum_{i=1}^m \lambda_i \boldsymbol{c} _i - \boldsymbol{\mu} \mid \lambda _i \in \mathbb{R}, \boldsymbol{\mu} \ge 0, \langle \boldsymbol{\mu} , \boldsymbol{x} \rangle > 0\right\}\]